BOSS DS-1 Distortion


電子工作界隈ではハードウェアの自作販売(同人ハードウェア)をされている人達がいらっしゃるのですが、そこでは基板やアクリル板が筐体となっているものを見かけます。エフェクターでも同様のことをやってみたいと思い今回の製作に至りました。

筐体として強度を得るため、何層にも基板を重ねます。ノイズ対策として、表面と裏面は基板の銅箔面でシールドしますが、側面は基板の取付に手間がかかり過ぎるためなしにします。なのでトゥルーバイパス方式ではシールドされていない経路が長くなり、ノイズ的に不利になります。そこでバッファありのエフェクターが候補になりますが、その中で最も一般的と思われるBOSS DS-1を選びました。

▽回路図(KiCadデータはGitHubへ)

パーツ点数を減らすため、クワッド(4回路入り)オペアンプとし、JKフリップフロップというロジックICを使いました。この4027というICはARIONのエフェクター(ARION SCH-Z)で使用されていたので、その回路をそのまま拝借しています(47nFのコンデンサが使ってある所は0.1μFを1個でも問題なさそうです)。
※元のDS-1回路では250pF、68nFのコンデンサがありますが、あまり使わない値なので別の値を並列にしています。

▽側面・底面写真

底板は4隅にメイン基板とはんだ付けできる部分があり、アースに接続できます。「基板エフェクター」と書いていますが、中間層はアクリル板を使った方が安く済むので、基板のみで構成しているものは最初で最後になりそうです。

下写真のように厚さ1.6mmの基板を16枚重ね合わせています。


中間層はすべて同じ形でも大丈夫ですが、せっかくなので3パターンに分けています。この形状のノブは表側への出っ張りが少なくてもつまみやすいです。ただノブの周りの隙間が狭すぎたので、回すときに引っかかりを感じるときがあります(GitHubのデータは修正済)。

フレームの幅は3mmですが思ったよりも強度があり、普通に踏んで壊れることはまずないでしょう。インプットジャックから最初のバッファまで、最短で到達するようにレイアウトしており、ノイズも特に問題ないと思います。丸い筐体など、いろいろな形を考えてみるのも楽しそうです。

タグ : 自作エフェクター 回路図 歪み 

Owm Pedal H7 ハードウェア編

03s_253_1owmHp.jpg
STM32F405を搭載した「Owm Pedal」に引き続き、STM32H753とタッチパネル付ディスプレイを備えたデジタルエフェクターを製作しました。今回も穴加工はTabby's工房さんにお願いしました。(Owm Pedal H7 ソフトウェア編はこちら

▽入出力・電源部 回路図
03s_253_2owmHas.png
4回路入りオペアンプOPA1679を使用することにしたので、以前と違い入力部のローパスフィルタが2次になっています。デジタル電源は絶縁型DC-DCコンバータで分離するようにしました。コンバータなしにもできるようにしましたが、ノイズ面でよくないと思われるので非推奨です。

▽マイコン・オーディオコーデック部 回路図
03s_253_3owmHds.png
当初はSTM32F722を使っていたのですが、さらなる発展を見据えSTM32H7を使うことにしました。注文時の在庫の関係でSTM32H753にしましたが、STM32H743でも問題ないと思います。今回はオーディオサンプリングレート44.1kHzで、SAIペリフェラルを使います。

▽基板レイアウトについて(KiCadデータはGitHubへ)
上側のマイコン基板は4層にしてみました。JLCPCBの場合、50mm×50mm以内であれば4層でも13ドルで済みます。マイコンは可能な限りピンを引き出していますが、全部は使わないので内側は小さいパッドです。GNDは基本一面プレーンで、基板が2枚に分かれているのでコネクタ部分でGNDを接続することになります。DC-DCコンバータは高さを低くするため寝かせて配置しました。

▽ディスプレイ・スイッチ基板レイアウト
03s_253_4owmHl.png
念のためダンピング抵抗を入れています。消費電流がそれなりにあるので、マイコン用とは別に3.3Vを準備しました。ディスプレイの詳細は以前の記事(STM32 SPI接続タッチパネル付ディスプレイを使う)をご参照ください。下写真のように基板を合体させます。
03s_253_5owmHi.jpg

▽周波数特性・ノイズ
ZOOM MS-50Gと特性を比較しました。MS-50GはParaEQを6個並べて+20dBになるよう調節しています。ノイズは1kHz正弦波入力時のものです。
03s_253_6owmHf.gif
Owm PedalはMS-50Gより高域のノイズが多いように見えますが、MS-50Gはもともと高域が下がっているので、それを加味するとほぼ同じノイズレベルといってよいと思います。Owm Pedal H7では1dB程度ノイズが多いですが原因はよくわかりません。基板設計としては、部品配置に注意すればOwm PedalのようにGNDを1面プレーンにしても問題ないとわかりました。入出力のフィルタも、簡単な1次ローパスフィルタで充分かもしれません。

タグ : 自作エフェクター レイアウト 回路図 マイコン 周波数特性 

Nuzz

02_245_1nuzzp.jpg
「Nutube自作エフェクターコンテスト」第二弾に向けて製作したエフェクターです。読み方は「ニャズ」で、一応肉球のような筐体デザインとなっています。

第一回コンテストでアイデアが出尽くしているのでどのような回路にするか悩みましたが、誰もやっていなさそうなグリッド接地回路を採用することにしました。Nutubeでのグリッド接地回路では、入力をフィラメントに加えるしかありません。フィラメントは過大入力により焼き切れてしまうため、必ずクリッピングが必要です。そういうわけでハードクリップした音を使うファズを作ろうと考えました。

▽回路図
02_245_2nuzzs.png
<Nutube周辺>
フィラメントへの入力はなぜか片方だけでは出力が低くなったので両方にしています。R9~R11は最も増幅率が高くなるように調節しました(R9は通常トリマーにする必要があると思います)。それでもNutube部分では5倍程度の増幅率なので歪ませるのは無理で、ただ通すだけという形になってしまいました。フィラメントの電圧は実測0.9V~1.2V程度と低いですが問題ないようです。いろいろと実験していたので、寿命が縮んだり動作がおかしくなっている部分があったりするかもしれません。オペアンプは念のため出力電流に余裕があるNJM4556Aを使用しました。

<クリッピング>
ファズはあまり作ったことがなく、ファズっぽい音というのは何なのかイマイチわかりません。Fuzz Face Analysisというページを見てみると、Fuzz Faceはかなり非対称に偏った歪みで、デューティ比が極端な矩形波となっています。おそらく偶数次倍音が多く出ているでしょう。これを踏まえ、クリッピングは片側をショットキーダイオード1個にするという極端なものとしました。半波整流にすることも検討しましたが、あまり使いやすいといえる音ではないと思います。デューティ比が極端な矩形波については、オペアンプを使って実現させるのは難しく、再現に至りませんでした。

▽レイアウト
02_245_3nuzzl.png
HAMMOND1590Aサイズに詰め込みました。Nutubeはスカスカのスポンジで挟み込んでいます。スイッチング時のマイクロフォニックノイズはNuverdrive+より少なめでした。

周波数特性については、低域はカットせず高域をかなりカットするような形です。ZOOM MS-50Gに入っているTB MK1.5(おそらくトーンベンダー)と比較すると似たニュアンスの音でしたので、それなりにファズっぽさというものを出すことができていると思います。

タグ : 自作エフェクター レイアウト 回路図 歪み 波形・倍音 

True Bypass Relay Module

02_244_1TBRMp.png
秋月電子にある特価ラッチリレーEA2-5TNAGを利用したトゥルーバイパスモジュールです。以前解析したmonomonster Relay Bypass Moduleの代わりとして考えました。マイコンを使った方が小型で長押し等に応用が効くという利点があるのですが、プログラミングが必要なのはややハードルが高いかと思います。別な方法を検索してみるとロジックIC(4069)を使ったものを見つけたので、そのまま利用することにしました。
参考ページ→Using a latching relay driver for true bypass

▽回路図
02_244_2TBRMs.png
秋月電子では在庫限りの部品が多いのでご注意ください。おそらくC8(10μF)はなしでも大丈夫だと思います。

基板データはGitHubに公開しています。当初ラッチリレーのピン配置の表裏が逆というミスがあったので、公開しているデータはエラー修正済のRev.B基板です。エラー修正前のRev.A基板をお持ちの方は必ずREADME.txtの内容をご確認下さい。HAMMOND1590Bの場合は基板を立てて入れられないので、次に基板発注することがあればもう少し横長に修正するかもしれません。

スイッチングノイズをオシロスコープで確認しました。
02_244_3TBRMn.png
一般的な黒い3PDTスイッチと比較すると高い音のノイズですが、音量は同程度のようです。スイッチ交換がしやすい以外の利点がないように思われますが、BOSS筐体に使うような場合には最適ではないかと思います。

タグ : 回路図 自作エフェクター 

Tremolec

02_243_1tremolecp.jpg
東京エフェクター「第6回エフェクタービルダーズ・コンテスト」に向けて製作した、トレモロを周波数帯域別にかけるというエフェクターです。全てデジタル信号処理でやる方が楽だと思いますが、製作時は知識が足りずアナログ回路+マイコン制御の練習として取り組みました。タップテンポ付きで、LFO周期に合わせて左側のLEDが点滅します。名前の由来は、トレモロとイコライザ(Tremolo + EQ)を合わせたものです。

筐体は少し変わった形にしたかったので、タカチのHEN110312Sというケースです。上下側が放熱用の形状なので、DCジャックの穴を開けるのが大変でした。ラベルデザインはKiCadでやってみましたが、フォントを取り込むのは面倒なので標準フォントをそのまま使っています。

▽回路図
02_243_2tremolecs.png
一般的なグラフィックイコライザ回路の可変抵抗部分をフォトカプラLCR0202で置き換えたものとなります。DAコンバータMCP4922から出力される電圧によりフォトカプラのLEDの明るさを制御し、抵抗値を変えるという仕組みです。LFO周期の半分で増幅側のフォトカプラだけを動かし、もう半分で減衰側を動かすという動作となっています。電圧変化が直線的だと音量変化がスムーズでなかったため、独自にデータを取って電圧変化を指数カーブに修正しました。また、フォトカプラの特性はバラつきがあるので、増幅と減衰の幅が同じくらいになるようマッチングしました。

AVRマイコンATmega328Pは内部クロック8MHzで動作させています。ポットやスイッチの読取(ADコンバータ)、LFO(DAコンバータ制御)、タップテンポといった機能を担っています。

▽レイアウトについて(KiCadデータはGitHubへ)
隙間が多いので表面実装でなくてもよかったかもしれません。一応アナログGNDとデジタルGNDを分けるようにしました。デジタルのノイズは測定限界以下で問題ないようです。C7、C9は何も入れておらず、後からコンデンサの値を調節できるように設けた部分になります。

▽Arduinoスケッチ
#include <SPI.h>

// ピン設定 実際は高速処理するため該当レジスタを直接変更
const byte swPin = 2; // タップスイッチ
const byte ledPin = 3; // PD3 周期表示用LED
const byte SS1 = 10; // PB2 MCP4922 Low
const byte SS2 = 9; // PB1 MCP4922 Mid
const byte SS3 = 8; // PB0 MCP4922 Treble
const byte LDAC = 7; // PD7 MCP4922 電圧出力作動ピン

// LFO1周期を500分割 0.002周期経過するごとに電圧値を変更する
volatile int pwmCount = 0; // LFO用カウンタ 0〜499
volatile int waveCount = 0; // 波形用カウンタ 0~125

volatile unsigned long timeCount = 0; // タップ時間取得用カウンタ
unsigned long tapTime = 0; // タップ間隔時間 us
unsigned long timeTemp = 0; // タップ間隔時間一時保存用
unsigned long swCount = 0; // タップスイッチ用カウンタ

byte adcNum = 0; // ADC番号(配列の添字)Bass0 Mid1 Tre2 Wave3 Div4 Rate5
const byte adcPinArray[6] = {16, 17, 18, 19, 14, 15}; // ADCピン設定
unsigned int oldAdcValue[6] = {2000, 2001, 2002, 2003, 2004, 2005}; // 旧ADC値
unsigned int newAdcValue[6] = {1110, 1111, 1112, 1113, 1114, 1115}; // 新ADC値

unsigned int dacArray[626]; // 電圧値配列 626段階 セットアップ時計算
unsigned long dacDepth[3] = {0, 1, 2}; // 電圧値配列添字部分の倍率
volatile unsigned int dacValueA[3] = {4001, 4002, 4003}; // 出力電圧値 増幅側
volatile unsigned int dacValueB[3] = {4011, 4012, 4013}; // 出力電圧値 減衰側
byte waveAmp = 1; // 三角波→矩形波変換 増幅率
const byte SQ = 12; // 上記増幅率設定値
byte tapDiv = 1; // タップ時間分割値
//const float rateAdj = 1.000; // 周期補正 実測して設定→不要

const unsigned int ledOnTime = 40000; // 周期表示LED点灯時間設定値 us
unsigned int ledOffCount = 250; // 上記LEDが消灯するカウンタ値

void setup() {
TIMSK0 = 0; // Timer0割り込み停止 安定動作のため割り込みはTimer1のみ

// 電圧値の配列を計算 指数カーブ
for (int i = 0; i <= 625; i++) {
dacArray[i] = 4141 - 46 * exp(0.0072 * i);
}

pinMode(swPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);
pinMode(SS1, OUTPUT);
pinMode(SS2, OUTPUT);
pinMode(SS3, OUTPUT);
pinMode(LDAC, OUTPUT);

SPI.begin();
SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0)); // SPI 8MHz

// Timer1 電圧値変更間隔時間管理・タップ時間計測
TCCR1A = 0b00000000; // Timer1 CTCモード
TCCR1B = 0b00001010; // Timer1 CTCモード クロック8分周
OCR1A = 100; // Timer1 比較Aの値 = 割り込み間隔 us
TIMSK1 |= (1 << OCIE1A); // Timer1 比較A割り込み許可
}

// LFO(Timer1 比較A割り込み)-----------------------------------------------------
ISR(TIMER1_COMPA_vect) {
timeCount++; // タップ時間取得用カウンタ
PORTD &= ~_BV(7); // LDAC LOW (最初に電圧出力)
PORTD |= _BV(7); // LDAC HIGH
if (pwmCount == 500) pwmCount = 0; // 0〜499 ループ
if (pwmCount <= 125) { // 三角波 増幅側上昇
waveCount = waveAmp * pwmCount; // 三角波を増幅後、
waveCount = min(waveCount, 125); // クリップし矩形波とする
dacA(waveCount);
} else if (pwmCount <= 250) { // 三角波 増幅側下降
waveCount = waveAmp * (250 - pwmCount);
waveCount = min(waveCount, 125);
dacA(waveCount);
} else if (pwmCount <= 375) { // 三角波 減衰側上昇
waveCount = waveAmp * (pwmCount - 250);
waveCount = min(waveCount, 125);
dacB(waveCount);
} else { // 三角波 減衰側下降
waveCount = waveAmp * (500 - pwmCount);
waveCount = min(waveCount, 125);
dacB(waveCount);
}
if (pwmCount == 125) PORTD |= _BV(3); // 周期表示LED点灯
if (pwmCount == ledOffCount) PORTD &= ~_BV(3); // 消灯
pwmCount++;
}

void loop() {
// タップテンポ -----------------------------------------------------------------
if (digitalRead(swPin) == LOW) {
swCount++;
if (swCount == 50) { // チャタリング対策 数msスイッチ押下で検出
// 前回スイッチ検出から経過した時間を記録
tapTime = timeTemp + timeCount * OCR1A + TCNT1;
TCNT1 = 0; // 経過時間をリセット
timeTemp = 0;
timeCount = 0;
pwmCount = 124; // 増幅最大の点にリセット
if ( 200000 < tapTime && tapTime < 2100000) { // 周期制限 0.2秒~2.1秒
// タップ間隔を電圧値変更間隔時間へ換算(Divスイッチ加味)
OCR1A = tapTime * 0.002 / tapDiv;
// どの周期でも周期表示LEDの点灯時間が同程度になるよう計算
ledOffCount = 125 + ledOnTime / OCR1A;
}
}
}
else swCount = 0;

// ADC --------------------------------------------------------------------------
adcNum++;
if (adcNum == 6) adcNum = 0; // 0〜5 ループ
newAdcValue[adcNum] = analogRead(adcPinArray[adcNum]); // 読取値が4以上変化で変更
if (abs(newAdcValue[adcNum] - oldAdcValue[adcNum]) >= 4) {
if (adcNum <= 2) { // Depth 0〜640 160までは急な変化
if (newAdcValue[adcNum] < 100) dacDepth[adcNum] = 1.6 * newAdcValue[adcNum];
else dacDepth[adcNum] = 0.5201 * newAdcValue[adcNum] + 108;
} else if (adcNum == 3) { // Wave 1 or SQ 矩形波変換増幅率
if (newAdcValue[adcNum] < 500) waveAmp = 1;
else waveAmp = SQ;
} else if (adcNum == 4) { // Div 1〜3 タップ時間分割値
tapDiv = 0.0029 * newAdcValue[adcNum] + 1;
} else if (adcNum == 5) { // Rate 4004〜133 電圧値変更間隔時間
// Rate変更前から経過した時間を記録
timeTemp = timeTemp + timeCount * OCR1A + TCNT1;
TCNT1 = 0; // 経過時間をリセット
timeCount = 0;
// Rate計算 指数カーブ
OCR1A = 73 * exp(0.0039 * (1023 - newAdcValue[adcNum])) + 60;
// どの周期でも周期表示LEDの点灯時間が同程度になるよう計算
ledOffCount = 125 + ledOnTime / OCR1A;
}
oldAdcValue[adcNum] = newAdcValue[adcNum];
}
}

// 電圧値設定 A:増幅側 B:減衰側--------------------------------------------------
void dacA(int w) { // w:waveCount 波形用カウンタ
// w(0〜125)にDepth(0〜640)をかけ128で割ったものが電圧値配列の添字(0〜625)
dacValueA[0] = dacArray[(dacDepth[0] * w) >> 7];
dacValueA[1] = dacArray[(dacDepth[1] * w) >> 7];
dacValueA[2] = dacArray[(dacDepth[2] * w) >> 7];
PORTB &= ~_BV(2); // SS1(PB2) LOW
SPI.transfer((dacValueA[0] >> 8) | 0x30); // 0x30=0b00110000 A出力 バッファなし
SPI.transfer(dacValueA[0] & 0xff); // ゲイン1倍 シャットダウンなし
PORTB |= _BV(2); // SS1(PB2) HIGH
PORTB &= ~_BV(1); // SS2(PB1)
SPI.transfer((dacValueA[1] >> 8) | 0x30);
SPI.transfer(dacValueA[1] & 0xff);
PORTB |= _BV(1);
PORTB &= ~_BV(0); // SS3(PB0)
SPI.transfer((dacValueA[2] >> 8) | 0x30);
SPI.transfer(dacValueA[2] & 0xff);
PORTB |= _BV(0);
}

void dacB(int w) {
dacValueB[0] = dacArray[(dacDepth[0] * w) >> 7];
dacValueB[1] = dacArray[(dacDepth[1] * w) >> 7];
dacValueB[2] = dacArray[(dacDepth[2] * w) >> 7];
PORTB &= ~_BV(2);
SPI.transfer((dacValueB[0] >> 8) | 0xb0); // 0xb0=0b10110000 B出力
SPI.transfer(dacValueB[0] & 0xff);
PORTB |= _BV(2);
PORTB &= ~_BV(1);
SPI.transfer((dacValueB[1] >> 8) | 0xb0);
SPI.transfer(dacValueB[1] & 0xff);
PORTB |= _BV(1);
PORTB &= ~_BV(0);
SPI.transfer((dacValueB[2] >> 8) | 0xb0);
SPI.transfer(dacValueB[2] & 0xff);
PORTB |= _BV(0);
}
過去記事(→ATtiny85 タップテンポ付LFO その2)と同じようなスケッチで、割り込み時の処理がDAコンバータ制御に変わっています。MCP4922の使い方は下記ページを参考にしました。高速処理するため、今回はレジスタを直接変更しています。
きむ茶工房ガレージハウス - DAコンバータ MCP4922(SPI)を利用しD/A変換を行う

音については今までにない効果だと思うので、どう評価されるかわかりません。TREBLEのみ揺らす、MIDのみ揺らさない等、いろんなパターンを試せるので、誰でもきっと「お気に入りのトレモロ」が見つけられるんじゃないかと思います。



以下、採用にならなかった案をメモしておきます。

<他のイコライザ回路>
下記ページのような3バンドイコライザ回路があります。DJミキサーに使われているらしいです。
Equalisers, The Various Types And How They Work - 9 - Frequency 'Isolators'
シミュレーションしてみたのですが、減衰時の特性がいまいち気に入りませんでした。

<デジタルポテンショメータ(以下DPOT)>
フォトカプラの部分にDPOTを使うことを最初検討していました。しかし普通のDPOTは分解能が8ビットなので、1/256ずつ飛び飛びに値を動かすことになり、ノイズが発生してしまうことになります。常にDPOTを動かし続ける今回の用途には向いていないと判断しました。

<フォトカプラのPWM制御>
フォトカプラのLED側をPWMで制御しようと思い、PWM出力が6つ使えるマイコンATmega1284Pを準備しました。しかしPWMが一部8ビットなので、256段階でしか抵抗値を調節できず、スムーズに増幅・減衰の変化をさせることができませんでした。後から考えると、高性能な32ビットマイコンを使えばよかったかもしれません。

タグ : 自作エフェクター 回路図 レイアウト マイコン トレモロ 

管理人

管理人

自己紹介のページ
記事一覧
Twitter
GitHub

ブログ内検索
カテゴリー
タグ

自作エフェクター   レイアウト   回路図   歪み   周波数特性   マイコン   PureData   波形・倍音   RaspberryPi   エレキギター   アンプ   歪率   エフェクター自作方法   エレキベース   真空管   コーラス   ピックアップ   静音ギター   ヘッドフォンアンプ   擬似ギター出力   市販エフェクター   アコースティックギター   ブースター   コンデンサ   ソロギター   ポールピース   イコライザー   コンプレッサー   ビブラート   フェイザー   トレモロ   TAB譜   ディレイ   DIY_Layout_Creator   ワウ   オートワウ   バッファー   

最近の記事
最新コメント
Twitter
RSS
メールフォーム
当ブログに関するお問い合わせはこちらからお願いします。 ※FAQ(よくある質問)もお読みください。

お名前
メールアドレス
件名
本文

アクセスカウンター