STM32 計算速度データ

デジタルエフェクターでリアルタイムにデジタル信号処理をする場合、計算が間に合わずまともな音が出なくなるという可能性があります。そこで、様々な計算方法についてどの程度処理時間がかかるのか確認しておくことにしました。使ったのはNUCLEO-F401REで、FPU(浮動小数点演算処理装置)を備えています。開発環境はSTM32CubeIDE(1.0.2)です。



経過時間を確認するには、CPUのクロックサイクルのカウント数(以下サイクル数)を利用すると便利です。下記の記載をしておくと、サイクル数を確認できるようになります。(参考ページ→ARMのData Watchpoint and Trace Unitを使って処理時間計測をしてみよう
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;

そして下記のようにコードを書きます。「DWT->CYCCNT」に現在のサイクル数が入ります。コンパイル時に最適化されないように、volatileを入れ、サイクル数を変数として使うことにします。
volatile uint32_t start = 0;
volatile uint32_t stop = 0;
volatile uint32_t ivar[50] = {};
volatile uint32_t cnt[50] = {};

start = DWT->CYCCNT; // 開始時サイクル数
ivar[0] = start; // 計測したい処理
stop = DWT->CYCCNT; // 終了時サイクル数
cnt[0] = stop - start; // 処理にかかったサイクル数

上記「変数の代入」を基準として、処理を追加した場合にどのぐらいサイクル数が増えるかを確認しました。例えば乗算の場合、「ivar[1] = start * stop;」のようにして、変数の乗算を1つ追加するといった具合です。定数を使うと事前に計算されてしまう場合があるため、全て変数を使います。

コンパイル時の最適化オプション「O0(最適化なし)」と「Ofast(最速最適化)」での違いも確認します。1000回平均値ですが結果が結構変わるときがあり、あまり正確ではなさそうです。



<32ビット整数(uint32_t)>

サイクル数(O0)サイクル数(Ofast)
何もしない84
代入(=)※基準167
加算(+) 減算(-) 乗算(*)53
除算(/)97
剰余演算(%)118
各ビット演算(& | ! ^ >> <<)53
変数の呼び出しに数サイクル必要なのか、代入だけで結構時間がかかるようです。剰余演算がそんなに遅くないというのが意外でした。



<32ビット浮動小数点数(float)>

サイクル数(O0)サイクル数(Ofast)
代入(=)※基準167
加算(+) 減算(-) 乗算(*)54
除算(/)1717
定数での除算の場合は最適化で乗算と同じ速さになりますが、変数だと遅いままとなってしまいます。

C言語標準ライブラリmath.hにある数学の関数については以下の通りです。
サイクル数(O0)サイクル数(Ofast)
sqrtf5116
logf189189
expf216207
powf565571
sinf8279
sinhf286283
atanf189178
デシベル計算に使うpowfがかなり遅いので、ルックアップテーブルの利用を考える必要がありそうです。

CMSIS-DSPライブラリを導入し、とりあえず2つの関数を使ってみました。(参考ページ→STM32 CubeIDE環境で、CMSIS-DSPを使う方法
サイクル数(O0)サイクル数(Ofast)
arm_sqrt_f329113
arm_sin_f325652
今後、BiQuadフィルタやフーリエ変換等の活用について検討したいと思います。

タグ : マイコン 

STM32 SPI接続タッチパネル付ディスプレイを使う

03s_246_1ilip.jpg
Amazon等で取り扱いがある、320×240ドットのSPI接続タッチパネル付2.8インチディスプレイモジュールを使ってみます。前回とは違うILI9341という制御ICです。

Nucleoボードとディスプレイモジュールとの接続は下図の通りです。消費電流は実測50mA程度でした。
03s_246_1ilis.png
※電源に5Vではなく3.3Vを供給する場合は、モジュール裏面のジャンパー(J1)を繋ぎます。最初気づいていませんでしたが、一応動作していました。



<STM32CubeIDE(1.0.2) iocファイル Pinout & Configurationタブ>

・右側列 IC画像
 設定済ピンを変更しておく
  (21)-PA5 : SPI1_SCK
 ピン設定
  (38)-PC7 : GPIO_Output
  (42)-PA9 : GPIO_Output
  (43)-PA10 : GPIO_Output
  (56)-PB4 : GPIO_Input
  (58)-PB6 : GPIO_Output

左側列のConnectivity→SPI1を開く

・中央列上側 Mode
 Mode : Full-Duplex Master

・中央列下側 Configuration→Parameter Settingsタブ
 Data Size : 8 bits
 Prescaler (for Baud Rate) : 64 ※通信がうまくいかない場合は値を大きくして速度を落とします。



<STM32CubeIDE(1.0.2) main.cファイル他>

下記ページのライブラリを利用します。
 github.com/afiskon/stm32-ili9341(右側の[Clone or download]ボタンから全ファイルをダウンロードできます。)

Lib/ili9341フォルダ内の7ファイルを自分のプロジェクトの各フォルダへコピーします。
 Incフォルダ→fonts.h ili9341.h ili9341_touch.h testimg.h
 Srcフォルダ→fonts.c ili9341.c ili9341_touch.c

STM32F3シリーズのNucleoボードを使う場合、ili9341.cとili9341_touch.c最上部に記載されている"stm32f4xx_hal.h"を"stm32f3xx_hal.h"へ変更します。STM32F4シリーズの場合は、そのままでOKです。使用するGPIOピンはili9341.hとili9341_touch.hに#defineで定義されています。

ライブラリのmain.cから以下の3箇所のコードを自分のプロジェクトのmain.cへコピーします。
 /* USER CODE BEGIN Includes */〜/* USER CODE END Includes */
 /* USER CODE BEGIN 0 */〜/* USER CODE END 0 */
 /* USER CODE BEGIN WHILE */~/* USER CODE END WHILE */

実行しディスプレイに画像等が表示されれば成功です。最後の黒い画面ではタッチパネルのテストができます。前回のディスプレイは描画した後毎回画面を更新していましたが、今回はその必要はありません。

タグ : マイコン 

Tremolec

02_243_1tremolecp.jpg
東京エフェクター「第6回エフェクタービルダーズ・コンテスト」に向けて製作した、トレモロを周波数帯域別にかけるというエフェクターです。全てデジタル信号処理でやる方が楽だと思いますが、製作時は知識が足りずアナログ回路+マイコン制御の練習として取り組みました。タップテンポ付きで、LFO周期に合わせて左側のLEDが点滅します。名前の由来は、トレモロとイコライザ(Tremolo + EQ)を合わせたものです。

筐体は少し変わった形にしたかったので、タカチのHEN110312Sというケースです。上下側が放熱用の形状なので、DCジャックの穴を開けるのが大変でした。ラベルデザインはKiCadでやってみましたが、フォントを取り込むのは面倒なので標準フォントをそのまま使っています。

▽回路図
02_243_2tremolecs.png
一般的なグラフィックイコライザ回路の可変抵抗部分をフォトカプラLCR0202で置き換えたものとなります。DAコンバータMCP4922から出力される電圧によりフォトカプラのLEDの明るさを制御し、抵抗値を変えるという仕組みです。LFO周期の半分で増幅側のフォトカプラだけを動かし、もう半分で減衰側を動かすという動作となっています。電圧変化が直線的だと音量変化がスムーズでなかったため、独自にデータを取って電圧変化を指数カーブに修正しました。また、フォトカプラの特性はバラつきがあるので、増幅と減衰の幅が同じくらいになるようマッチングしました。

AVRマイコンATmega328Pは内部クロック8MHzで動作させています。ポットやスイッチの読取(ADコンバータ)、LFO(DAコンバータ制御)、タップテンポといった機能を担っています。

▽レイアウトについて(KiCadデータはGitHubへ)
隙間が多いので表面実装でなくてもよかったかもしれません。一応アナログGNDとデジタルGNDを分けるようにしました。デジタルのノイズは測定限界以下で問題ないようです。C7、C9は何も入れておらず、後からコンデンサの値を調節できるように設けた部分になります。

▽Arduinoスケッチ
#include <SPI.h>

// ピン設定 実際は高速処理するため該当レジスタを直接変更
const byte swPin = 2; // タップスイッチ
const byte ledPin = 3; // PD3 周期表示用LED
const byte SS1 = 10; // PB2 MCP4922 Low
const byte SS2 = 9; // PB1 MCP4922 Mid
const byte SS3 = 8; // PB0 MCP4922 Treble
const byte LDAC = 7; // PD7 MCP4922 電圧出力作動ピン

// LFO1周期を500分割 0.002周期経過するごとに電圧値を変更する
volatile int pwmCount = 0; // LFO用カウンタ 0〜499
volatile int waveCount = 0; // 波形用カウンタ 0~125

volatile unsigned long timeCount = 0; // タップ時間取得用カウンタ
unsigned long tapTime = 0; // タップ間隔時間 us
unsigned long timeTemp = 0; // タップ間隔時間一時保存用
unsigned long swCount = 0; // タップスイッチ用カウンタ

byte adcNum = 0; // ADC番号(配列の添字)Bass0 Mid1 Tre2 Wave3 Div4 Rate5
const byte adcPinArray[6] = {16, 17, 18, 19, 14, 15}; // ADCピン設定
unsigned int oldAdcValue[6] = {2000, 2001, 2002, 2003, 2004, 2005}; // 旧ADC値
unsigned int newAdcValue[6] = {1110, 1111, 1112, 1113, 1114, 1115}; // 新ADC値

unsigned int dacArray[626]; // 電圧値配列 626段階 セットアップ時計算
unsigned long dacDepth[3] = {0, 1, 2}; // 電圧値配列添字部分の倍率
volatile unsigned int dacValueA[3] = {4001, 4002, 4003}; // 出力電圧値 増幅側
volatile unsigned int dacValueB[3] = {4011, 4012, 4013}; // 出力電圧値 減衰側
byte waveAmp = 1; // 三角波→矩形波変換 増幅率
const byte SQ = 12; // 上記増幅率設定値
byte tapDiv = 1; // タップ時間分割値
//const float rateAdj = 1.000; // 周期補正 実測して設定→不要

const unsigned int ledOnTime = 40000; // 周期表示LED点灯時間設定値 us
unsigned int ledOffCount = 250; // 上記LEDが消灯するカウンタ値

void setup() {
TIMSK0 = 0; // Timer0割り込み停止 安定動作のため割り込みはTimer1のみ

// 電圧値の配列を計算 指数カーブ
for (int i = 0; i <= 625; i++) {
dacArray[i] = 4141 - 46 * exp(0.0072 * i);
}

pinMode(swPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);
pinMode(SS1, OUTPUT);
pinMode(SS2, OUTPUT);
pinMode(SS3, OUTPUT);
pinMode(LDAC, OUTPUT);

SPI.begin();
SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0)); // SPI 8MHz

// Timer1 電圧値変更間隔時間管理・タップ時間計測
TCCR1A = 0b00000000; // Timer1 CTCモード
TCCR1B = 0b00001010; // Timer1 CTCモード クロック8分周
OCR1A = 100; // Timer1 比較Aの値 = 割り込み間隔 us
TIMSK1 |= (1 << OCIE1A); // Timer1 比較A割り込み許可
}

// LFO(Timer1 比較A割り込み)-----------------------------------------------------
ISR(TIMER1_COMPA_vect) {
timeCount++; // タップ時間取得用カウンタ
PORTD &= ~_BV(7); // LDAC LOW (最初に電圧出力)
PORTD |= _BV(7); // LDAC HIGH
if (pwmCount == 500) pwmCount = 0; // 0〜499 ループ
if (pwmCount <= 125) { // 三角波 増幅側上昇
waveCount = waveAmp * pwmCount; // 三角波を増幅後、
waveCount = min(waveCount, 125); // クリップし矩形波とする
dacA(waveCount);
} else if (pwmCount <= 250) { // 三角波 増幅側下降
waveCount = waveAmp * (250 - pwmCount);
waveCount = min(waveCount, 125);
dacA(waveCount);
} else if (pwmCount <= 375) { // 三角波 減衰側上昇
waveCount = waveAmp * (pwmCount - 250);
waveCount = min(waveCount, 125);
dacB(waveCount);
} else { // 三角波 減衰側下降
waveCount = waveAmp * (500 - pwmCount);
waveCount = min(waveCount, 125);
dacB(waveCount);
}
if (pwmCount == 125) PORTD |= _BV(3); // 周期表示LED点灯
if (pwmCount == ledOffCount) PORTD &= ~_BV(3); // 消灯
pwmCount++;
}

void loop() {
// タップテンポ -----------------------------------------------------------------
if (digitalRead(swPin) == LOW) {
swCount++;
if (swCount == 50) { // チャタリング対策 数msスイッチ押下で検出
// 前回スイッチ検出から経過した時間を記録
tapTime = timeTemp + timeCount * OCR1A + TCNT1;
TCNT1 = 0; // 経過時間をリセット
timeTemp = 0;
timeCount = 0;
pwmCount = 124; // 増幅最大の点にリセット
if ( 200000 < tapTime && tapTime < 2100000) { // 周期制限 0.2秒~2.1秒
// タップ間隔を電圧値変更間隔時間へ換算(Divスイッチ加味)
OCR1A = tapTime * 0.002 / tapDiv;
// どの周期でも周期表示LEDの点灯時間が同程度になるよう計算
ledOffCount = 125 + ledOnTime / OCR1A;
}
}
}
else swCount = 0;

// ADC --------------------------------------------------------------------------
adcNum++;
if (adcNum == 6) adcNum = 0; // 0〜5 ループ
newAdcValue[adcNum] = analogRead(adcPinArray[adcNum]); // 読取値が4以上変化で変更
if (abs(newAdcValue[adcNum] - oldAdcValue[adcNum]) >= 4) {
if (adcNum <= 2) { // Depth 0〜640 160までは急な変化
if (newAdcValue[adcNum] < 100) dacDepth[adcNum] = 1.6 * newAdcValue[adcNum];
else dacDepth[adcNum] = 0.5201 * newAdcValue[adcNum] + 108;
} else if (adcNum == 3) { // Wave 1 or SQ 矩形波変換増幅率
if (newAdcValue[adcNum] < 500) waveAmp = 1;
else waveAmp = SQ;
} else if (adcNum == 4) { // Div 1〜3 タップ時間分割値
tapDiv = 0.0029 * newAdcValue[adcNum] + 1;
} else if (adcNum == 5) { // Rate 4004〜133 電圧値変更間隔時間
// Rate変更前から経過した時間を記録
timeTemp = timeTemp + timeCount * OCR1A + TCNT1;
TCNT1 = 0; // 経過時間をリセット
timeCount = 0;
// Rate計算 指数カーブ
OCR1A = 73 * exp(0.0039 * (1023 - newAdcValue[adcNum])) + 60;
// どの周期でも周期表示LEDの点灯時間が同程度になるよう計算
ledOffCount = 125 + ledOnTime / OCR1A;
}
oldAdcValue[adcNum] = newAdcValue[adcNum];
}
}

// 電圧値設定 A:増幅側 B:減衰側--------------------------------------------------
void dacA(int w) { // w:waveCount 波形用カウンタ
// w(0〜125)にDepth(0〜640)をかけ128で割ったものが電圧値配列の添字(0〜625)
dacValueA[0] = dacArray[(dacDepth[0] * w) >> 7];
dacValueA[1] = dacArray[(dacDepth[1] * w) >> 7];
dacValueA[2] = dacArray[(dacDepth[2] * w) >> 7];
PORTB &= ~_BV(2); // SS1(PB2) LOW
SPI.transfer((dacValueA[0] >> 8) | 0x30); // 0x30=0b00110000 A出力 バッファなし
SPI.transfer(dacValueA[0] & 0xff); // ゲイン1倍 シャットダウンなし
PORTB |= _BV(2); // SS1(PB2) HIGH
PORTB &= ~_BV(1); // SS2(PB1)
SPI.transfer((dacValueA[1] >> 8) | 0x30);
SPI.transfer(dacValueA[1] & 0xff);
PORTB |= _BV(1);
PORTB &= ~_BV(0); // SS3(PB0)
SPI.transfer((dacValueA[2] >> 8) | 0x30);
SPI.transfer(dacValueA[2] & 0xff);
PORTB |= _BV(0);
}

void dacB(int w) {
dacValueB[0] = dacArray[(dacDepth[0] * w) >> 7];
dacValueB[1] = dacArray[(dacDepth[1] * w) >> 7];
dacValueB[2] = dacArray[(dacDepth[2] * w) >> 7];
PORTB &= ~_BV(2);
SPI.transfer((dacValueB[0] >> 8) | 0xb0); // 0xb0=0b10110000 B出力
SPI.transfer(dacValueB[0] & 0xff);
PORTB |= _BV(2);
PORTB &= ~_BV(1);
SPI.transfer((dacValueB[1] >> 8) | 0xb0);
SPI.transfer(dacValueB[1] & 0xff);
PORTB |= _BV(1);
PORTB &= ~_BV(0);
SPI.transfer((dacValueB[2] >> 8) | 0xb0);
SPI.transfer(dacValueB[2] & 0xff);
PORTB |= _BV(0);
}
過去記事(→ATtiny85 タップテンポ付LFO その2)と同じようなスケッチで、割り込み時の処理がDAコンバータ制御に変わっています。MCP4922の使い方は下記ページを参考にしました。高速処理するため、今回はレジスタを直接変更しています。
きむ茶工房ガレージハウス - DAコンバータ MCP4922(SPI)を利用しD/A変換を行う

音については今までにない効果だと思うので、どう評価されるかわかりません。TREBLEのみ揺らす、MIDのみ揺らさない等、いろんなパターンを試せるので、誰でもきっと「お気に入りのトレモロ」が見つけられるんじゃないかと思います。



以下、採用にならなかった案をメモしておきます。

<他のイコライザ回路>
下記ページのような3バンドイコライザ回路があります。DJミキサーに使われているらしいです。
Equalisers, The Various Types And How They Work - 9 - Frequency 'Isolators'
シミュレーションしてみたのですが、減衰時の特性がいまいち気に入りませんでした。

<デジタルポテンショメータ(以下DPOT)>
フォトカプラの部分にDPOTを使うことを最初検討していました。しかし普通のDPOTは分解能が8ビットなので、1/256ずつ飛び飛びに値を動かすことになり、ノイズが発生してしまうことになります。常にDPOTを動かし続ける今回の用途には向いていないと判断しました。

<フォトカプラのPWM制御>
フォトカプラのLED側をPWMで制御しようと思い、PWM出力が6つ使えるマイコンATmega1284Pを準備しました。しかしPWMが一部8ビットなので、256段階でしか抵抗値を調節できず、スムーズに増幅・減衰の変化をさせることができませんでした。後から考えると、高性能な32ビットマイコンを使えばよかったかもしれません。

タグ : 自作エフェクター 回路図 レイアウト マイコン トレモロ 

Srempy

03s_242_1srempy.jpg
デジタルエフェクターというとディスプレイをつけたくなるもので、ポットなしでスイッチのみを使って操作するというエフェクターを製作しました。精度よく角穴加工するのはかなり大変なので、Tabby's工房さんにお願いしました。

▽ディスプレイ・スイッチ基板レイアウト
03s_242_2srempyL.png
いつものようにチャタリング防止を行っています。OLEDディスプレイ基板用押ボタンスイッチは秋月電子で購入しました。

DSP基板はOwm Pedalと同じものを使用しています。下写真のように合体させます。
03s_242_3srempyi.jpg

ディスプレイの詳細は前回記事をご覧ください。スイッチ操作は割り込みではなくメインループで処理しています(GitHubはこちら)。エフェクトオフ時にはスイッチの反応が速くなりますが、実用上問題ないので特に対処していません。▲▼スイッチ長押しでフラッシュメモリにパラメータ保存できます。下記ページの内容を使わせていただきました。
sora lab - STM + HAL Flashの書き込み・読み込み

エフェクトプログラムはもちろん変え放題ですが、今回私が考えたものを紹介したいと思います。※信号処理は旧処理方法(TxRxCpltCallback関数利用なし、16ビット)のままです。



アナログ回路でのフィルタ設計は複雑になる場合が多く、コンデンサの容量値も限られています。また、リアルタイムに動かすとなると可変抵抗やフォトカプラを使うぐらいしか選択肢がありません。デジタル信号処理でのフィルタについては計算方法が確立しているため、専門知識がなくとも設計可能で、任意の定数を動かすこともできます。計算式は下記ページのものを利用させていただきました。
C++でVST作り - 簡単なデジタルフィルタの実装

フェイザーはノッチフィルタがかかったような周波数特性で、谷となる周波数が動いています(参考ページ→MXR Phase 90 Analysis)。今回はこの特性をピーキングフィルタを使って再現、発展させたエフェクトを考えました。フェイザーとワウを合わせたような効果で、5つのモード(STD、SOFT、INV、HIGH、LOW)があります。名前の由来は3つ(Three)のピーキングフィルタ(Peaking Filter)です。

<STD・SOFTモード>
03s_242_4srempyF1.png
SOFTモードでは、単純に谷となるフィルタを2つかけています。谷と谷の間は減衰し、スッキリとした感じとなります。STD(スタンダード)モードは、Phase 90の特性に近づけています。うねり感を得るためには、2つの谷の間に山が必要なようです。ちなみに2つの谷の間隔が広いとユニヴァイブのコーラスモードっぽい音になります。谷となる周波数の揺れ幅や高低は、出音への影響は少なかったです。

<INV・HIGH・LOWモード>
03s_242_5srempyF2.png
フィルタを谷ではなく山にした場合、山が1つだとオートワウのようになります。山を2つにすると、クセは強いもののフェイザーっぽいシュワシュワ感が現れます。INV(インバース)モードでは、2つの山の間にさらに谷を追加しています。HIGH/LOWモードは谷と山を混ぜており、通常のフェイザーの高音域/低音域が強調された感じとなります。

<計算高速化>
BiQuadフィルタの係数は三角関数の計算が入っていて、そのままでは処理に時間がかかり過ぎると思われます。そのため表計算ソフトで近似式を算出するなどして対応しています。それでも実際のCPU使用率は70%程度となってしまいましたので、計算高速化についてはもう少し検討していく予定です。

タグ : 自作エフェクター 周波数特性 マイコン フェイザー 

STM32 I2C接続OLEDディスプレイを使う

03s_241_1oled.jpg
秋月電子等で取り扱いがある、128×64ドットのI2C制御有機ELディスプレイモジュールを使ってみます。使われているSSD1306は定番の制御ICらしいです。接続は上写真の通り、GND、VCC(3.3V)、SCL、SDAをつなぎます。SCL、SDAのプルアップ抵抗はモジュールに搭載されているようです。



<STM32CubeMX(5.1.0) Pinout & Configurationタブ>
左側列のConnectivity→I2C1を開く

・中央列上側 Mode
 I2C : I2C

・中央列下側 Configuration→Parameter Settingsタブ
 Rise Time (ns) : 1000
 Fall Time (ns) : 300

・右側列 IC画像
 ピン位置を変更
  (61)-PB8 : I2C1_SCL
  (62)-PB9 : I2C1_SDA



<TrueSTUDIO(9.3.0)>
下記ページのライブラリを利用します。必要最小限となっているので使いやすいと思います。
 github.com/4ilo/ssd1306-stm32HAL(右側の[Clone or download]ボタンから全ファイルをダウンロードできます。)

以下の4ファイルを自分のプロジェクトへコピーします。
 Incフォルダ→fonts.h ssd1306.h
 Srcフォルダ→fonts.c ssd1306.c

私のNucleoボードはSTM32F3シリーズなので、fonts.hとssd1306.h最上部に記載されている"stm32f4xx_hal.h"を"stm32f3xx_hal.h"へ変更します。STM32F4シリーズを使う場合は、そのままでOKです。

ライブラリのmain.cから以下の2箇所のコードを自分のmain.cへコピーします。
 /* USER CODE BEGIN Includes */〜/* USER CODE END Includes */
 /* USER CODE BEGIN 2 */〜/* USER CODE END 2 */

実行しディスプレイに文字が表示されれば成功です。以下は各関数の簡単な説明です。円などの図形を描く関数はないので、必要なものはssd1306_DrawPixel関数を使って描画することになります。
 ssd1306_Init…初期化
 ssd1306_Fill…画面全体塗りつぶし
 ssd1306_DrawPixel…1ピクセル描画
 ssd1306_SetCursor…文字描画位置を設定
 ssd1306_WriteString…文字列を描画
 ssd1306_UpdateScreen…描画を反映して画面を更新



<画面端の文字を強制描画>
ディスプレイ端のピクセル数が足りない場合、文字描画しないようになっていますが、文字が切れてでも描画するようにします。ssd1306_DrawPixel関数で画面外は描画しないよう制限されているので、たぶん問題ないでしょう。

ssd1306.c内、ssd1306_WriteChar関数の以下の記述を削除
// Check remaining space on current line
if (SSD1306_WIDTH <= (SSD1306.CurrentX + Font.FontWidth) ||
SSD1306_HEIGHT <= (SSD1306.CurrentY + Font.FontHeight))
{
// Not enough space on current line
return 0;
}



<フォント自作>
font.cにフォントのデータが入っており、自分で文字データを作成することができます。例として7x10ピクセルの「2」を0と1で描きます。横は左側7列だけ使いますが、後々のために16列準備します。
0011100000000000
0100010000000000
0100010000000000
0000010000000000
0000100000000000
0001000000000000
0010000000000000
0111110000000000
0000000000000000
0000000000000000
1行ずつを16桁の2進数とみなし、16進数へ変換します。
→0x3800, 0x4400, 0x4400, 0x0400, 0x0800, 0x1000, 0x2000, 0x7C00, 0x0000, 0x0000
これを「2」のフォントデータとすればOKです。自動計算できる表計算ファイル(LibreOfficeやOpenOfficeで開けるodsファイル)をGitHubに置いています。

タグ : マイコン 

管理人

管理人

自己紹介のページ
記事一覧
Twitter
GitHub

ブログ内検索
カテゴリー
タグ

自作エフェクター   レイアウト   回路図   歪み   PureData   周波数特性   マイコン   波形・倍音   RaspberryPi   エレキギター   アンプ   エレキベース   エフェクター自作方法   歪率   真空管   コーラス   ピックアップ   静音ギター   ヘッドフォンアンプ   擬似ギター出力   市販エフェクター   アコースティックギター   ブースター   コンデンサ   ソロギター   ポールピース   イコライザー   コンプレッサー   ビブラート   フェイザー   トレモロ   TAB譜   ディレイ   DIY_Layout_Creator   ワウ   オートワウ   バッファー   

最近の記事
最新コメント
Twitter
RSS
メールフォーム
当ブログに関するお問い合わせはこちらからお願いします。 ※FAQ(よくある質問)もお読みください。

お名前
メールアドレス
件名
本文

アクセスカウンター