Tremolec

02_243_1tremolecp.jpg
東京エフェクター「第6回エフェクタービルダーズ・コンテスト」に向けて製作した、トレモロを周波数帯域別にかけるというエフェクターです。全てデジタル信号処理でやる方が楽だと思いますが、製作時は知識が足りずアナログ回路+マイコン制御の練習として取り組みました。タップテンポ付きで、LFO周期に合わせて左側のLEDが点滅します。名前の由来は、トレモロとイコライザ(Tremolo + EQ)を合わせたものです。

筐体は少し変わった形にしたかったので、タカチのHEN110312Sというケースです。上下側が放熱用の形状なので、DCジャックの穴を開けるのが大変でした。ラベルデザインはKiCadでやってみましたが、フォントを取り込むのは面倒なので標準フォントをそのまま使っています。

▽回路図
02_243_2tremolecs.png
一般的なグラフィックイコライザ回路の可変抵抗部分をフォトカプラLCR0202で置き換えたものとなります。DAコンバータMCP4922から出力される電圧によりフォトカプラのLEDの明るさを制御し、抵抗値を変えるという仕組みです。LFO周期の半分で増幅側のフォトカプラだけを動かし、もう半分で減衰側を動かすという動作となっています。電圧変化が直線的だと音量変化がスムーズでなかったため、独自にデータを取って電圧変化を指数カーブに修正しました。また、フォトカプラの特性はバラつきがあるので、増幅と減衰の幅が同じくらいになるようマッチングしました。

AVRマイコンATmega328Pは内部クロック8MHzで動作させています。ポットやスイッチの読取(ADコンバータ)、LFO(DAコンバータ制御)、タップテンポといった機能を担っています。

▽レイアウトについて(KiCadデータはGitHubへ)
隙間が多いので表面実装でなくてもよかったかもしれません。一応アナログGNDとデジタルGNDを分けるようにしました。デジタルのノイズは測定限界以下で問題ないようです。C7、C9は何も入れておらず、後からコンデンサの値を調節できるように設けた部分になります。

▽Arduinoスケッチ
#include <SPI.h>

// ピン設定 実際は高速処理するため該当レジスタを直接変更
const byte swPin = 2; // タップスイッチ
const byte ledPin = 3; // PD3 周期表示用LED
const byte SS1 = 10; // PB2 MCP4922 Low
const byte SS2 = 9; // PB1 MCP4922 Mid
const byte SS3 = 8; // PB0 MCP4922 Treble
const byte LDAC = 7; // PD7 MCP4922 電圧出力作動ピン

// LFO1周期を500分割 0.002周期経過するごとに電圧値を変更する
volatile int pwmCount = 0; // LFO用カウンタ 0〜499
volatile int waveCount = 0; // 波形用カウンタ 0~125

volatile unsigned long timeCount = 0; // タップ時間取得用カウンタ
unsigned long tapTime = 0; // タップ間隔時間 us
unsigned long timeTemp = 0; // タップ間隔時間一時保存用
unsigned long swCount = 0; // タップスイッチ用カウンタ

byte adcNum = 0; // ADC番号(配列の添字)Bass0 Mid1 Tre2 Wave3 Div4 Rate5
const byte adcPinArray[6] = {16, 17, 18, 19, 14, 15}; // ADCピン設定
unsigned int oldAdcValue[6] = {2000, 2001, 2002, 2003, 2004, 2005}; // 旧ADC値
unsigned int newAdcValue[6] = {1110, 1111, 1112, 1113, 1114, 1115}; // 新ADC値

unsigned int dacArray[626]; // 電圧値配列 626段階 セットアップ時計算
unsigned long dacDepth[3] = {0, 1, 2}; // 電圧値配列添字部分の倍率
volatile unsigned int dacValueA[3] = {4001, 4002, 4003}; // 出力電圧値 増幅側
volatile unsigned int dacValueB[3] = {4011, 4012, 4013}; // 出力電圧値 減衰側
byte waveAmp = 1; // 三角波→矩形波変換 増幅率
const byte SQ = 12; // 上記増幅率設定値
byte tapDiv = 1; // タップ時間分割値
//const float rateAdj = 1.000; // 周期補正 実測して設定→不要

const unsigned int ledOnTime = 40000; // 周期表示LED点灯時間設定値 us
unsigned int ledOffCount = 250; // 上記LEDが消灯するカウンタ値

void setup() {
TIMSK0 = 0; // Timer0割り込み停止 安定動作のため割り込みはTimer1のみ

// 電圧値の配列を計算 指数カーブ
for (int i = 0; i <= 625; i++) {
dacArray[i] = 4141 - 46 * exp(0.0072 * i);
}

pinMode(swPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);
pinMode(SS1, OUTPUT);
pinMode(SS2, OUTPUT);
pinMode(SS3, OUTPUT);
pinMode(LDAC, OUTPUT);

SPI.begin();
SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0)); // SPI 8MHz

// Timer1 電圧値変更間隔時間管理・タップ時間計測
TCCR1A = 0b00000000; // Timer1 CTCモード
TCCR1B = 0b00001010; // Timer1 CTCモード クロック8分周
OCR1A = 100; // Timer1 比較Aの値 = 割り込み間隔 us
TIMSK1 |= (1 << OCIE1A); // Timer1 比較A割り込み許可
}

// LFO(Timer1 比較A割り込み)-----------------------------------------------------
ISR(TIMER1_COMPA_vect) {
timeCount++; // タップ時間取得用カウンタ
PORTD &= ~_BV(7); // LDAC LOW (最初に電圧出力)
PORTD |= _BV(7); // LDAC HIGH
if (pwmCount == 500) pwmCount = 0; // 0〜499 ループ
if (pwmCount <= 125) { // 三角波 増幅側上昇
waveCount = waveAmp * pwmCount; // 三角波を増幅後、
waveCount = min(waveCount, 125); // クリップし矩形波とする
dacA(waveCount);
} else if (pwmCount <= 250) { // 三角波 増幅側下降
waveCount = waveAmp * (250 - pwmCount);
waveCount = min(waveCount, 125);
dacA(waveCount);
} else if (pwmCount <= 375) { // 三角波 減衰側上昇
waveCount = waveAmp * (pwmCount - 250);
waveCount = min(waveCount, 125);
dacB(waveCount);
} else { // 三角波 減衰側下降
waveCount = waveAmp * (500 - pwmCount);
waveCount = min(waveCount, 125);
dacB(waveCount);
}
if (pwmCount == 125) PORTD |= _BV(3); // 周期表示LED点灯
if (pwmCount == ledOffCount) PORTD &= ~_BV(3); // 消灯
pwmCount++;
}

void loop() {
// タップテンポ -----------------------------------------------------------------
if (digitalRead(swPin) == LOW) {
swCount++;
if (swCount == 50) { // チャタリング対策 数msスイッチ押下で検出
// 前回スイッチ検出から経過した時間を記録
tapTime = timeTemp + timeCount * OCR1A + TCNT1;
TCNT1 = 0; // 経過時間をリセット
timeTemp = 0;
timeCount = 0;
pwmCount = 124; // 増幅最大の点にリセット
if ( 200000 < tapTime && tapTime < 2100000) { // 周期制限 0.2秒~2.1秒
// タップ間隔を電圧値変更間隔時間へ換算(Divスイッチ加味)
OCR1A = tapTime * 0.002 / tapDiv;
// どの周期でも周期表示LEDの点灯時間が同程度になるよう計算
ledOffCount = 125 + ledOnTime / OCR1A;
}
}
}
else swCount = 0;

// ADC --------------------------------------------------------------------------
adcNum++;
if (adcNum == 6) adcNum = 0; // 0〜5 ループ
newAdcValue[adcNum] = analogRead(adcPinArray[adcNum]); // 読取値が4以上変化で変更
if (abs(newAdcValue[adcNum] - oldAdcValue[adcNum]) >= 4) {
if (adcNum <= 2) { // Depth 0〜640 160までは急な変化
if (newAdcValue[adcNum] < 100) dacDepth[adcNum] = 1.6 * newAdcValue[adcNum];
else dacDepth[adcNum] = 0.5201 * newAdcValue[adcNum] + 108;
} else if (adcNum == 3) { // Wave 1 or SQ 矩形波変換増幅率
if (newAdcValue[adcNum] < 500) waveAmp = 1;
else waveAmp = SQ;
} else if (adcNum == 4) { // Div 1〜3 タップ時間分割値
tapDiv = 0.0029 * newAdcValue[adcNum] + 1;
} else if (adcNum == 5) { // Rate 4004〜133 電圧値変更間隔時間
// Rate変更前から経過した時間を記録
timeTemp = timeTemp + timeCount * OCR1A + TCNT1;
TCNT1 = 0; // 経過時間をリセット
timeCount = 0;
// Rate計算 指数カーブ
OCR1A = 73 * exp(0.0039 * (1023 - newAdcValue[adcNum])) + 60;
// どの周期でも周期表示LEDの点灯時間が同程度になるよう計算
ledOffCount = 125 + ledOnTime / OCR1A;
}
oldAdcValue[adcNum] = newAdcValue[adcNum];
}
}

// 電圧値設定 A:増幅側 B:減衰側--------------------------------------------------
void dacA(int w) { // w:waveCount 波形用カウンタ
// w(0〜125)にDepth(0〜640)をかけ128で割ったものが電圧値配列の添字(0〜625)
dacValueA[0] = dacArray[(dacDepth[0] * w) >> 7];
dacValueA[1] = dacArray[(dacDepth[1] * w) >> 7];
dacValueA[2] = dacArray[(dacDepth[2] * w) >> 7];
PORTB &= ~_BV(2); // SS1(PB2) LOW
SPI.transfer((dacValueA[0] >> 8) | 0x30); // 0x30=0b00110000 A出力 バッファなし
SPI.transfer(dacValueA[0] & 0xff); // ゲイン1倍 シャットダウンなし
PORTB |= _BV(2); // SS1(PB2) HIGH
PORTB &= ~_BV(1); // SS2(PB1)
SPI.transfer((dacValueA[1] >> 8) | 0x30);
SPI.transfer(dacValueA[1] & 0xff);
PORTB |= _BV(1);
PORTB &= ~_BV(0); // SS3(PB0)
SPI.transfer((dacValueA[2] >> 8) | 0x30);
SPI.transfer(dacValueA[2] & 0xff);
PORTB |= _BV(0);
}

void dacB(int w) {
dacValueB[0] = dacArray[(dacDepth[0] * w) >> 7];
dacValueB[1] = dacArray[(dacDepth[1] * w) >> 7];
dacValueB[2] = dacArray[(dacDepth[2] * w) >> 7];
PORTB &= ~_BV(2);
SPI.transfer((dacValueB[0] >> 8) | 0xb0); // 0xb0=0b10110000 B出力
SPI.transfer(dacValueB[0] & 0xff);
PORTB |= _BV(2);
PORTB &= ~_BV(1);
SPI.transfer((dacValueB[1] >> 8) | 0xb0);
SPI.transfer(dacValueB[1] & 0xff);
PORTB |= _BV(1);
PORTB &= ~_BV(0);
SPI.transfer((dacValueB[2] >> 8) | 0xb0);
SPI.transfer(dacValueB[2] & 0xff);
PORTB |= _BV(0);
}
過去記事(→ATtiny85 タップテンポ付LFO その2)と同じようなスケッチで、割り込み時の処理がDAコンバータ制御に変わっています。MCP4922の使い方は下記ページを参考にしました。高速処理するため、今回はレジスタを直接変更しています。
きむ茶工房ガレージハウス - DAコンバータ MCP4922(SPI)を利用しD/A変換を行う

音については今までにない効果だと思うので、どう評価されるかわかりません。TREBLEのみ揺らす、MIDのみ揺らさない等、いろんなパターンを試せるので、誰でもきっと「お気に入りのトレモロ」が見つけられるんじゃないかと思います。



以下、採用にならなかった案をメモしておきます。

<他のイコライザ回路>
下記ページのような3バンドイコライザ回路があります。DJミキサーに使われているらしいです。
Equalisers, The Various Types And How They Work - 9 - Frequency 'Isolators'
シミュレーションしてみたのですが、減衰時の特性がいまいち気に入りませんでした。

<デジタルポテンショメータ(以下DPOT)>
フォトカプラの部分にDPOTを使うことを最初検討していました。しかし普通のDPOTは分解能が8ビットなので、1/256ずつ飛び飛びに値を動かすことになり、ノイズが発生してしまうことになります。常にDPOTを動かし続ける今回の用途には向いていないと判断しました。

<フォトカプラのPWM制御>
フォトカプラのLED側をPWMで制御しようと思い、PWM出力が6つ使えるマイコンATmega1284Pを準備しました。しかしPWMが一部8ビットなので、256段階でしか抵抗値を調節できず、スムーズに増幅・減衰の変化をさせることができませんでした。後から考えると、高性能な32ビットマイコンを使えばよかったかもしれません。

タグ : 自作エフェクター 回路図 レイアウト マイコン トレモロ 

LFO/トレモロ(Pure Data パッチ)

Pure Data(Pd)では、[osc~]で余弦波、[phasor~]でノコギリ波を発生させることができます。[cos~]はコサインを計算しますが、[phasor~]と組み合わせて余弦波を発生させるために使う場合があります。[phasor~]は0から1へ上がる形なので、-1をかければ0から-1へ下がる形になります。
03p_201_1wave.png

<三角波(Triangle Wave)>
エフェクターに使われるLFO(Low Frequency Oscillator)は三角波が多いようです。Pdでは[phasor~]等を組み合わせることになります。
03p_201_2tri.png
3パターン示していますが、結局[expr~]が一番楽な気がします。

<矩形波(Square Wave)>
あまり使わなさそうですが、一応3パターン示しています。
03p_201_3squ.png



三角波を使い普通のトレモロを作りました。waveコントロールは、三角波を増幅してクリップすることで矩形波へと近づける仕組みになっています。
03p_201_4trem.pngこのパッチをダウンロード
三角波は直線的な数値変化ですが、[dbtorms~]を入れることで指数的な倍率変化による音量操作となるようにしています。

タグ : PureData トレモロ 

4ms Tremulus Lune改

02_71_1TremulusP.jpg
最近揺れモノが多いんですが、次はトレモロです。TONEPADにあるTremulus Luneですが、ポットはRate、Depth、Waveの3つだけにしました。エフェクターの自作とかモディファイというと、ポットを増やしたりスイッチを増やしたりする方が多いですが、私は極力減らす派です(まぁめんどくさがりなだけです)。前にバッファも入れてますが、面倒なので回路は書いてません。

▽回路図
TONEPAD Tremulus Lune プロジェクトファイル ダウンロードページ

▽レイアウト
02_71_2TremulusL.gif
▽PCB(横55.9mm縦35.6mm)
02_71_3TremulusLP.gif

フォトカプラは自作です。余っていたLEDとCdsを熱収縮チューブでくっつけただけのものです。Fineポットはなし、Spacingポットはソケットで対応しています。

最初はあんまり使わなさそうだなぁと思っていましたが、使ってみるとすごくいいです。シンプルに音量を揺らすだけというのがすばらしい。揺れのスピードを速めにして浅くかけるのがさりげなくていいです。もちろんマシンガンっぽいのもできます。

ケースは黒地に赤と青と白を薄く振り掛けるようにして塗ってみました。写真だとラメが入ってるように見えます。あんまりトレモロっぽくないので他のと移しかえようかな…

---以下2009年4月4日追加---

LEDを高輝度5mmのものから通常の3mmのものに変えました。
やはり音量調整したかったのでLFOの波形を三角波固定にし、出力に100kBのポットを追加しました。そのためトリマーは音量を上げるように設定してます。またRATEポットを5kAに変えました。
ケースをひよこのページ ディストーション改と入れ替えています。色はわかりにくいですがピンクです。

タグ : 自作エフェクター トレモロ レイアウト 

管理人

管理人

自己紹介のページ
記事一覧
Twitter
GitHub

ブログ内検索
カテゴリー
タグ

自作エフェクター   レイアウト   回路図   歪み   PureData   周波数特性   波形・倍音   マイコン   RaspberryPi   エレキギター   アンプ   エフェクター自作方法   歪率   エレキベース   真空管   コーラス   ピックアップ   静音ギター   ヘッドフォンアンプ   擬似ギター出力   市販エフェクター   アコースティックギター   ブースター   コンデンサ   ソロギター   ポールピース   イコライザー   コンプレッサー   ビブラート   フェイザー   トレモロ   TAB譜   ディレイ   DIY_Layout_Creator   ワウ   オートワウ   バッファー   

最近の記事
最新コメント
Twitter
RSS
メールフォーム
当ブログに関するお問い合わせはこちらからお願いします。 ※FAQ(よくある質問)もお読みください。

お名前
メールアドレス
件名
本文

アクセスカウンター