STM32 計算速度データ

デジタルエフェクターでリアルタイムにデジタル信号処理をする場合、計算が間に合わずまともな音が出なくなるという可能性があります。そこで、様々な計算方法についてどの程度処理時間がかかるのか確認しておくことにしました。使ったのはNUCLEO-F401REで、FPU(浮動小数点演算処理装置)を備えています。開発環境はSTM32CubeIDE(1.0.2)です。



経過時間を確認するには、CPUのクロックサイクルのカウント数(以下サイクル数)を利用すると便利です。下記の記載をしておくと、サイクル数を確認できるようになります。(参考ページ→ARMのData Watchpoint and Trace Unitを使って処理時間計測をしてみよう
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;

そして下記のようにコードを書きます。「DWT->CYCCNT」に現在のサイクル数が入ります。コンパイル時に最適化されないように、volatileを入れ、サイクル数を変数として使うことにします。
volatile uint32_t start = 0;
volatile uint32_t stop = 0;
volatile uint32_t ivar[50] = {};
volatile uint32_t cnt[50] = {};

start = DWT->CYCCNT; // 開始時サイクル数
ivar[0] = start; // 計測したい処理
stop = DWT->CYCCNT; // 終了時サイクル数
cnt[0] = stop - start; // 処理にかかったサイクル数

上記「変数の代入」を基準として、処理を追加した場合にどのぐらいサイクル数が増えるかを確認しました。例えば乗算の場合、「ivar[1] = start * stop;」のようにして、変数の乗算を1つ追加するといった具合です。定数を使うと事前に計算されてしまう場合があるため、全て変数を使います。

コンパイル時の最適化オプション「O0(最適化なし)」と「Ofast(最速最適化)」での違いも確認します。1000回平均値ですが結果が結構変わるときがあり、あまり正確ではなさそうです。



<32ビット整数(uint32_t)>

サイクル数(O0)サイクル数(Ofast)
何もしない84
代入(=)※基準167
加算(+) 減算(-) 乗算(*)53
除算(/)97
剰余演算(%)118
各ビット演算(& | ! ^ >> <<)53
変数の呼び出しに数サイクル必要なのか、代入だけで結構時間がかかるようです。剰余演算がそんなに遅くないというのが意外でした。



<32ビット浮動小数点数(float)>

サイクル数(O0)サイクル数(Ofast)
代入(=)※基準167
加算(+) 減算(-) 乗算(*)54
除算(/)1717
定数での除算の場合は最適化で乗算と同じ速さになりますが、変数だと遅いままとなってしまいます。

C言語標準ライブラリmath.hにある数学の関数については以下の通りです。
サイクル数(O0)サイクル数(Ofast)
sqrtf5116
logf189189
expf216207
powf565571
sinf8279
sinhf286283
atanf189178
デシベル計算に使うpowfがかなり遅いので、ルックアップテーブルの利用を考える必要がありそうです。

CMSIS-DSPライブラリを導入し、とりあえず2つの関数を使ってみました。(参考ページ→STM32 CubeIDE環境で、CMSIS-DSPを使う方法
サイクル数(O0)サイクル数(Ofast)
arm_sqrt_f329113
arm_sin_f325652
今後、BiQuadフィルタやフーリエ変換等の活用について検討したいと思います。

タグ : マイコン 

STM32 SPI接続タッチパネル付ディスプレイを使う

03s_246_1ilip.jpg
Amazon等で取り扱いがある、320×240ドットのSPI接続タッチパネル付2.8インチディスプレイモジュールを使ってみます。前回とは違うILI9341という制御ICです。

Nucleoボードとディスプレイモジュールとの接続は下図の通りです。消費電流は実測50mA程度でした。
03s_246_1ilis.png
※電源に5Vではなく3.3Vを供給する場合は、モジュール裏面のジャンパー(J1)を繋ぎます。最初気づいていませんでしたが、一応動作していました。



<STM32CubeIDE(1.0.2) iocファイル Pinout & Configurationタブ>

・右側列 IC画像
 設定済ピンを変更しておく
  (21)-PA5 : SPI1_SCK
 ピン設定
  (38)-PC7 : GPIO_Output
  (42)-PA9 : GPIO_Output
  (43)-PA10 : GPIO_Output
  (56)-PB4 : GPIO_Input
  (58)-PB6 : GPIO_Output

左側列のConnectivity→SPI1を開く

・中央列上側 Mode
 Mode : Full-Duplex Master

・中央列下側 Configuration→Parameter Settingsタブ
 Data Size : 8 bits
 Prescaler (for Baud Rate) : 64 ※通信がうまくいかない場合は値を大きくして速度を落とします。



<STM32CubeIDE(1.0.2) main.cファイル他>

下記ページのライブラリを利用します。
 github.com/afiskon/stm32-ili9341(右側の[Clone or download]ボタンから全ファイルをダウンロードできます。)

Lib/ili9341フォルダ内の7ファイルを自分のプロジェクトの各フォルダへコピーします。
 Incフォルダ→fonts.h ili9341.h ili9341_touch.h testimg.h
 Srcフォルダ→fonts.c ili9341.c ili9341_touch.c

STM32F3シリーズのNucleoボードを使う場合、ili9341.cとili9341_touch.c最上部に記載されている"stm32f4xx_hal.h"を"stm32f3xx_hal.h"へ変更します。STM32F4シリーズの場合は、そのままでOKです。使用するGPIOピンはili9341.hとili9341_touch.hに#defineで定義されています。

ライブラリのmain.cから以下の3箇所のコードを自分のプロジェクトのmain.cへコピーします。
 /* USER CODE BEGIN Includes */〜/* USER CODE END Includes */
 /* USER CODE BEGIN 0 */〜/* USER CODE END 0 */
 /* USER CODE BEGIN WHILE */~/* USER CODE END WHILE */

実行しディスプレイに画像等が表示されれば成功です。最後の黒い画面ではタッチパネルのテストができます。前回のディスプレイは描画した後毎回画面を更新していましたが、今回はその必要はありません。

タグ : マイコン 

Nuzz

02_245_1nuzzp.jpg
「Nutube自作エフェクターコンテスト」第二弾に向けて製作したエフェクターです。読み方は「ニャズ」で、一応肉球のような筐体デザインとなっています。

第一回コンテストでアイデアが出尽くしているのでどのような回路にするか悩みましたが、誰もやっていなさそうなグリッド接地回路を採用することにしました。Nutubeでのグリッド接地回路では、入力をフィラメントに加えるしかありません。フィラメントは過大入力により焼き切れてしまうため、必ずクリッピングが必要です。そういうわけでハードクリップした音を使うファズを作ろうと考えました。

▽回路図
02_245_2nuzzs.png
<Nutube周辺>
フィラメントへの入力はなぜか片方だけでは出力が低くなったので両方にしています。R9~R11は最も増幅率が高くなるように調節しました(R9は通常トリマーにする必要があると思います)。それでもNutube部分では5倍程度の増幅率なので歪ませるのは無理で、ただ通すだけという形になってしまいました。フィラメントの電圧は実測0.9V~1.2V程度と低いですが問題ないようです。いろいろと実験していたので、寿命が縮んだり動作がおかしくなっている部分があったりするかもしれません。オペアンプは念のため出力電流に余裕があるNJM4556Aを使用しました。

<クリッピング>
ファズはあまり作ったことがなく、ファズっぽい音というのは何なのかイマイチわかりません。Fuzz Face Analysisというページを見てみると、Fuzz Faceはかなり非対称に偏った歪みで、デューティ比が極端な矩形波となっています。おそらく偶数次倍音が多く出ているでしょう。これを踏まえ、クリッピングは片側をショットキーダイオード1個にするという極端なものとしました。半波整流にすることも検討しましたが、あまり使いやすいといえる音ではないと思います。デューティ比が極端な矩形波については、オペアンプを使って実現させるのは難しく、再現に至りませんでした。

▽レイアウト
02_245_3nuzzl.png
HAMMOND1590Aサイズに詰め込みました。Nutubeはスカスカのスポンジで挟み込んでいます。スイッチング時のマイクロフォニックノイズはNuverdrive+より少なめでした。

周波数特性については、低域はカットせず高域をかなりカットするような形です。ZOOM MS-50Gに入っているTB MK1.5(おそらくトーンベンダー)と比較すると似たニュアンスの音でしたので、それなりにファズっぽさというものを出すことができていると思います。

タグ : 自作エフェクター レイアウト 回路図 歪み 波形・倍音 

True Bypass Relay Module

02_244_1TBRMp.png
秋月電子にある特価ラッチリレーEA2-5TNAGを利用したトゥルーバイパスモジュールです。以前解析したmonomonster Relay Bypass Moduleの代わりとして考えました。マイコンを使った方が小型で長押し等に応用が効くという利点があるのですが、プログラミングが必要なのはややハードルが高いかと思います。別な方法を検索してみるとロジックIC(4069)を使ったものを見つけたので、そのまま利用することにしました。
参考ページ→Using a latching relay driver for true bypass

▽回路図
02_244_2TBRMs.png
秋月電子では在庫限りの部品が多いのでご注意ください。おそらくC8(10μF)はなしでも大丈夫だと思います。

基板データはGitHubに公開しています。当初ラッチリレーのピン配置の表裏が逆というミスがあったので、公開しているデータはエラー修正済のRev.B基板です。エラー修正前のRev.A基板をお持ちの方は必ずREADME.txtの内容をご確認下さい。HAMMOND1590Bの場合は基板を立てて入れられないので、次に基板発注することがあればもう少し横長に修正するかもしれません。

スイッチングノイズをオシロスコープで確認しました。
02_244_3TBRMn.png
一般的な黒い3PDTスイッチと比較すると高い音のノイズですが、音量は同程度のようです。スイッチ交換がしやすい以外の利点がないように思われますが、BOSS筐体に使うような場合には最適ではないかと思います。

タグ : 回路図 自作エフェクター 

Tremolec

02_243_1tremolecp.jpg
東京エフェクター「第6回エフェクタービルダーズ・コンテスト」に向けて製作した、トレモロを周波数帯域別にかけるというエフェクターです。全てデジタル信号処理でやる方が楽だと思いますが、製作時は知識が足りずアナログ回路+マイコン制御の練習として取り組みました。タップテンポ付きで、LFO周期に合わせて左側のLEDが点滅します。名前の由来は、トレモロとイコライザ(Tremolo + EQ)を合わせたものです。

筐体は少し変わった形にしたかったので、タカチのHEN110312Sというケースです。上下側が放熱用の形状なので、DCジャックの穴を開けるのが大変でした。ラベルデザインはKiCadでやってみましたが、フォントを取り込むのは面倒なので標準フォントをそのまま使っています。

▽回路図
02_243_2tremolecs.png
一般的なグラフィックイコライザ回路の可変抵抗部分をフォトカプラLCR0202で置き換えたものとなります。DAコンバータMCP4922から出力される電圧によりフォトカプラのLEDの明るさを制御し、抵抗値を変えるという仕組みです。LFO周期の半分で増幅側のフォトカプラだけを動かし、もう半分で減衰側を動かすという動作となっています。電圧変化が直線的だと音量変化がスムーズでなかったため、独自にデータを取って電圧変化を指数カーブに修正しました。また、フォトカプラの特性はバラつきがあるので、増幅と減衰の幅が同じくらいになるようマッチングしました。

AVRマイコンATmega328Pは内部クロック8MHzで動作させています。ポットやスイッチの読取(ADコンバータ)、LFO(DAコンバータ制御)、タップテンポといった機能を担っています。

▽レイアウトについて(KiCadデータはGitHubへ)
隙間が多いので表面実装でなくてもよかったかもしれません。一応アナログGNDとデジタルGNDを分けるようにしました。デジタルのノイズは測定限界以下で問題ないようです。C7、C9は何も入れておらず、後からコンデンサの値を調節できるように設けた部分になります。

▽Arduinoスケッチ
#include <SPI.h>

// ピン設定 実際は高速処理するため該当レジスタを直接変更
const byte swPin = 2; // タップスイッチ
const byte ledPin = 3; // PD3 周期表示用LED
const byte SS1 = 10; // PB2 MCP4922 Low
const byte SS2 = 9; // PB1 MCP4922 Mid
const byte SS3 = 8; // PB0 MCP4922 Treble
const byte LDAC = 7; // PD7 MCP4922 電圧出力作動ピン

// LFO1周期を500分割 0.002周期経過するごとに電圧値を変更する
volatile int pwmCount = 0; // LFO用カウンタ 0〜499
volatile int waveCount = 0; // 波形用カウンタ 0~125

volatile unsigned long timeCount = 0; // タップ時間取得用カウンタ
unsigned long tapTime = 0; // タップ間隔時間 us
unsigned long timeTemp = 0; // タップ間隔時間一時保存用
unsigned long swCount = 0; // タップスイッチ用カウンタ

byte adcNum = 0; // ADC番号(配列の添字)Bass0 Mid1 Tre2 Wave3 Div4 Rate5
const byte adcPinArray[6] = {16, 17, 18, 19, 14, 15}; // ADCピン設定
unsigned int oldAdcValue[6] = {2000, 2001, 2002, 2003, 2004, 2005}; // 旧ADC値
unsigned int newAdcValue[6] = {1110, 1111, 1112, 1113, 1114, 1115}; // 新ADC値

unsigned int dacArray[626]; // 電圧値配列 626段階 セットアップ時計算
unsigned long dacDepth[3] = {0, 1, 2}; // 電圧値配列添字部分の倍率
volatile unsigned int dacValueA[3] = {4001, 4002, 4003}; // 出力電圧値 増幅側
volatile unsigned int dacValueB[3] = {4011, 4012, 4013}; // 出力電圧値 減衰側
byte waveAmp = 1; // 三角波→矩形波変換 増幅率
const byte SQ = 12; // 上記増幅率設定値
byte tapDiv = 1; // タップ時間分割値
//const float rateAdj = 1.000; // 周期補正 実測して設定→不要

const unsigned int ledOnTime = 40000; // 周期表示LED点灯時間設定値 us
unsigned int ledOffCount = 250; // 上記LEDが消灯するカウンタ値

void setup() {
TIMSK0 = 0; // Timer0割り込み停止 安定動作のため割り込みはTimer1のみ

// 電圧値の配列を計算 指数カーブ
for (int i = 0; i <= 625; i++) {
dacArray[i] = 4141 - 46 * exp(0.0072 * i);
}

pinMode(swPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);
pinMode(SS1, OUTPUT);
pinMode(SS2, OUTPUT);
pinMode(SS3, OUTPUT);
pinMode(LDAC, OUTPUT);

SPI.begin();
SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0)); // SPI 8MHz

// Timer1 電圧値変更間隔時間管理・タップ時間計測
TCCR1A = 0b00000000; // Timer1 CTCモード
TCCR1B = 0b00001010; // Timer1 CTCモード クロック8分周
OCR1A = 100; // Timer1 比較Aの値 = 割り込み間隔 us
TIMSK1 |= (1 << OCIE1A); // Timer1 比較A割り込み許可
}

// LFO(Timer1 比較A割り込み)-----------------------------------------------------
ISR(TIMER1_COMPA_vect) {
timeCount++; // タップ時間取得用カウンタ
PORTD &= ~_BV(7); // LDAC LOW (最初に電圧出力)
PORTD |= _BV(7); // LDAC HIGH
if (pwmCount == 500) pwmCount = 0; // 0〜499 ループ
if (pwmCount <= 125) { // 三角波 増幅側上昇
waveCount = waveAmp * pwmCount; // 三角波を増幅後、
waveCount = min(waveCount, 125); // クリップし矩形波とする
dacA(waveCount);
} else if (pwmCount <= 250) { // 三角波 増幅側下降
waveCount = waveAmp * (250 - pwmCount);
waveCount = min(waveCount, 125);
dacA(waveCount);
} else if (pwmCount <= 375) { // 三角波 減衰側上昇
waveCount = waveAmp * (pwmCount - 250);
waveCount = min(waveCount, 125);
dacB(waveCount);
} else { // 三角波 減衰側下降
waveCount = waveAmp * (500 - pwmCount);
waveCount = min(waveCount, 125);
dacB(waveCount);
}
if (pwmCount == 125) PORTD |= _BV(3); // 周期表示LED点灯
if (pwmCount == ledOffCount) PORTD &= ~_BV(3); // 消灯
pwmCount++;
}

void loop() {
// タップテンポ -----------------------------------------------------------------
if (digitalRead(swPin) == LOW) {
swCount++;
if (swCount == 50) { // チャタリング対策 数msスイッチ押下で検出
// 前回スイッチ検出から経過した時間を記録
tapTime = timeTemp + timeCount * OCR1A + TCNT1;
TCNT1 = 0; // 経過時間をリセット
timeTemp = 0;
timeCount = 0;
pwmCount = 124; // 増幅最大の点にリセット
if ( 200000 < tapTime && tapTime < 2100000) { // 周期制限 0.2秒~2.1秒
// タップ間隔を電圧値変更間隔時間へ換算(Divスイッチ加味)
OCR1A = tapTime * 0.002 / tapDiv;
// どの周期でも周期表示LEDの点灯時間が同程度になるよう計算
ledOffCount = 125 + ledOnTime / OCR1A;
}
}
}
else swCount = 0;

// ADC --------------------------------------------------------------------------
adcNum++;
if (adcNum == 6) adcNum = 0; // 0〜5 ループ
newAdcValue[adcNum] = analogRead(adcPinArray[adcNum]); // 読取値が4以上変化で変更
if (abs(newAdcValue[adcNum] - oldAdcValue[adcNum]) >= 4) {
if (adcNum <= 2) { // Depth 0〜640 160までは急な変化
if (newAdcValue[adcNum] < 100) dacDepth[adcNum] = 1.6 * newAdcValue[adcNum];
else dacDepth[adcNum] = 0.5201 * newAdcValue[adcNum] + 108;
} else if (adcNum == 3) { // Wave 1 or SQ 矩形波変換増幅率
if (newAdcValue[adcNum] < 500) waveAmp = 1;
else waveAmp = SQ;
} else if (adcNum == 4) { // Div 1〜3 タップ時間分割値
tapDiv = 0.0029 * newAdcValue[adcNum] + 1;
} else if (adcNum == 5) { // Rate 4004〜133 電圧値変更間隔時間
// Rate変更前から経過した時間を記録
timeTemp = timeTemp + timeCount * OCR1A + TCNT1;
TCNT1 = 0; // 経過時間をリセット
timeCount = 0;
// Rate計算 指数カーブ
OCR1A = 73 * exp(0.0039 * (1023 - newAdcValue[adcNum])) + 60;
// どの周期でも周期表示LEDの点灯時間が同程度になるよう計算
ledOffCount = 125 + ledOnTime / OCR1A;
}
oldAdcValue[adcNum] = newAdcValue[adcNum];
}
}

// 電圧値設定 A:増幅側 B:減衰側--------------------------------------------------
void dacA(int w) { // w:waveCount 波形用カウンタ
// w(0〜125)にDepth(0〜640)をかけ128で割ったものが電圧値配列の添字(0〜625)
dacValueA[0] = dacArray[(dacDepth[0] * w) >> 7];
dacValueA[1] = dacArray[(dacDepth[1] * w) >> 7];
dacValueA[2] = dacArray[(dacDepth[2] * w) >> 7];
PORTB &= ~_BV(2); // SS1(PB2) LOW
SPI.transfer((dacValueA[0] >> 8) | 0x30); // 0x30=0b00110000 A出力 バッファなし
SPI.transfer(dacValueA[0] & 0xff); // ゲイン1倍 シャットダウンなし
PORTB |= _BV(2); // SS1(PB2) HIGH
PORTB &= ~_BV(1); // SS2(PB1)
SPI.transfer((dacValueA[1] >> 8) | 0x30);
SPI.transfer(dacValueA[1] & 0xff);
PORTB |= _BV(1);
PORTB &= ~_BV(0); // SS3(PB0)
SPI.transfer((dacValueA[2] >> 8) | 0x30);
SPI.transfer(dacValueA[2] & 0xff);
PORTB |= _BV(0);
}

void dacB(int w) {
dacValueB[0] = dacArray[(dacDepth[0] * w) >> 7];
dacValueB[1] = dacArray[(dacDepth[1] * w) >> 7];
dacValueB[2] = dacArray[(dacDepth[2] * w) >> 7];
PORTB &= ~_BV(2);
SPI.transfer((dacValueB[0] >> 8) | 0xb0); // 0xb0=0b10110000 B出力
SPI.transfer(dacValueB[0] & 0xff);
PORTB |= _BV(2);
PORTB &= ~_BV(1);
SPI.transfer((dacValueB[1] >> 8) | 0xb0);
SPI.transfer(dacValueB[1] & 0xff);
PORTB |= _BV(1);
PORTB &= ~_BV(0);
SPI.transfer((dacValueB[2] >> 8) | 0xb0);
SPI.transfer(dacValueB[2] & 0xff);
PORTB |= _BV(0);
}
過去記事(→ATtiny85 タップテンポ付LFO その2)と同じようなスケッチで、割り込み時の処理がDAコンバータ制御に変わっています。MCP4922の使い方は下記ページを参考にしました。高速処理するため、今回はレジスタを直接変更しています。
きむ茶工房ガレージハウス - DAコンバータ MCP4922(SPI)を利用しD/A変換を行う

音については今までにない効果だと思うので、どう評価されるかわかりません。TREBLEのみ揺らす、MIDのみ揺らさない等、いろんなパターンを試せるので、誰でもきっと「お気に入りのトレモロ」が見つけられるんじゃないかと思います。



以下、採用にならなかった案をメモしておきます。

<他のイコライザ回路>
下記ページのような3バンドイコライザ回路があります。DJミキサーに使われているらしいです。
Equalisers, The Various Types And How They Work - 9 - Frequency 'Isolators'
シミュレーションしてみたのですが、減衰時の特性がいまいち気に入りませんでした。

<デジタルポテンショメータ(以下DPOT)>
フォトカプラの部分にDPOTを使うことを最初検討していました。しかし普通のDPOTは分解能が8ビットなので、1/256ずつ飛び飛びに値を動かすことになり、ノイズが発生してしまうことになります。常にDPOTを動かし続ける今回の用途には向いていないと判断しました。

<フォトカプラのPWM制御>
フォトカプラのLED側をPWMで制御しようと思い、PWM出力が6つ使えるマイコンATmega1284Pを準備しました。しかしPWMが一部8ビットなので、256段階でしか抵抗値を調節できず、スムーズに増幅・減衰の変化をさせることができませんでした。後から考えると、高性能な32ビットマイコンを使えばよかったかもしれません。

タグ : 自作エフェクター 回路図 レイアウト マイコン トレモロ 

管理人

管理人

自己紹介のページ
記事一覧
Twitter
GitHub

ブログ内検索
カテゴリー
タグ

自作エフェクター   レイアウト   回路図   歪み   PureData   周波数特性   マイコン   波形・倍音   RaspberryPi   エレキギター   アンプ   エフェクター自作方法   歪率   エレキベース   真空管   コーラス   ピックアップ   静音ギター   ヘッドフォンアンプ   擬似ギター出力   市販エフェクター   アコースティックギター   ブースター   コンデンサ   ソロギター   ポールピース   イコライザー   コンプレッサー   ビブラート   フェイザー   トレモロ   TAB譜   ディレイ   DIY_Layout_Creator   ワウ   オートワウ   バッファー   

最近の記事
最新コメント
Twitter
RSS
メールフォーム
当ブログに関するお問い合わせはこちらからお願いします。 ※FAQ(よくある質問)もお読みください。

お名前
メールアドレス
件名
本文

アクセスカウンター